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Abstract

The weighted sharing method is used in this article to mainly concentrate on higher order derivatives
of two non-constant meromorphic(entire) functions sharing of wunique range set S =
{w|w™ + aw™ + b = 0}, where n and m are co-prime, which in turn improve the results of Chen [3]
and P. Sahoo and A. Sarka[9] where they considered the unique range sets S; = {@y, @y, ... ax}, S, =
{B1, P2} in the class and subclass of meromorphic function. And also, we investigate the problems of
ff(2)(f™(2) —1P(f(z)) and g"(2)(g™(z) — 1)P(g(2)) sharing of (R(z),1), where R(z) is a
rational function, by giving sufficient conditions in terms of weighted value sets sharing. These results
generalize and improve the results of Dong-Mei Wei et al., [10]. The outcomes of this study provide a
new context for earlier findings.
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1 Introduction

In this paper, the term meromorphic will mean meromorphic in the complex plane C. Thetwo
meromorphic functions f and g be defined in C as non-constant functions. Readers can get the basic
knowledge on Nevanlinna value distribution theory of meromorphic functionin [6, 7, 11]. The
terms T (r),S(r,f ) are defined as T(r) =max{T(r,f),T(r,g)} and S(r,f) =
o(T(r, f)) as r tends to infinity outside a set E c (0, +) respectively. We define E(a; f ),
to denote the number of zeros of f — a, for a € C and a is counted according to its multiplicity. If
a = oo then the poles will be considered in the above definition.In the similar way we
denote E(a; f), to count the distinct zeros(poles) of f — a, for a € C(a = ).

Let S € CU {oo}. For a € S, the set of all a-points of f together with their multiplicities
(ignoring multiplicities) is defined as E¢(S)(Ef(S)). Then the functions f and g share the set S
CM(IM)  when  Ef(S) = E;(S)(Ef(S) = E4(S)). Let ke€eZzZ*, we  denote

Ny (r,ﬁ)(ﬁk) (r}%)) the CM(IM) of a-points of f with multiplicity < k and

N(i+1 (r, ]%a) <1V(k+1 (r, #)) the CM(IM) of a-points of f with multiplicity > k, where each a-
point is counted according to its multiplicity.

Definition 1. ([8]) Let k € Z* and a € C U {co}. The set of all a-points of f is denoted by Ej (a; f),
where a-point with multiplicity m is counted m times whenm < k and k + a times form > k. If
Ex(a; f) = Ex(a; g), then f and g share the value a of weight k. Suppose f and g share (a, k), is
nothing but they share the value a with weight k.

Definition 2. Let us define,

P(f(2)) = asf*+ as1f*" 4+ +ag = Xisoaif*, (1.1)

s€Z* as(# 0),as_4,,a, are constants.

Definition 3. ([13]) Let n,m € Z* with n > m and a, b(# 0) be constants, then S = {w|w™ +
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aw™ + b = 0} has n distinct roots if
L (T 12)
Definition 4. ([9]) Let G be a family of functions and S5, S,,..., S, be the subsets of C U {co}. Then
forany f,g € G, thesets S;, j = 1,2,...,q are called unique range sets (URS, in brief) if f and g
share S; CM imply f = g.
Theorem 1.1. (see [13], Theorem 1.13]) Let f(z) be a non-constant meromorphic function in C and

Ro(f) = g‘;((’;; where Po(f) = Xh_o@af® and Qo(f) = X3_obsf” are two mutually prime

polynomials in f. If the coefficients {a, (2)}, {bg(2)} are small functions of f and a,, # 0, by # 0,
then

T(r,Ro(f)) = max{p, }T(r, f) + S(r, f).
Theorem 1.2. (see [13], Theorem 7.10]) Suppose f and g are two non-constant meromorphic
functions sharing 1 CM. If

1 1
N, (r, f) + N, (r, 5) + Ny(r, f) + Ny(r,g) < (u + 0(1))T(r),

r€ I,whereu <1, T(r) = max{T(r,f),T(r,g)}, r € (0,0). Then f =gorfg=1.

In 2020, Wei and Huang [10], investigated the weighted value sharing results.

Theorem 1.3. ([10]) Let ¢ € C — {0} and f, g be finite order meromorphic functions. Consider the
case where ¢ and g¢ share the set (R(z), 1), where [, d are integers and R(z) is a rational function.
If any of the following holds:

(H! = 0,d = 15;

(2)L =1,d = 10;

31l =2d=09,

then f = tg or fg = ta, where t = 1, a® = R?.

In 2021, A. Banerjee and S. Bhattacharyya [2] proved the following result for the class of all
meromorphic functions.

Theorem 1.4. ([2]) If r is a positive integer, then S; = {aq, ay,..., -}, S, = {f1, B2}, fulfill the
requirement  (B; — a1)*(B1 — az)? (B1 — ar)? # (B2 — a)* (B, — @3)* =+ (B, — a,)?.  The
finite complex numbers a4, a5, ..., a,, f1, B, canonly be one of §;(i = 1,2) € S;. If f and g are two
meromorphic functions and f is a non-integer finite order, then they share (S;; 1) and (S,; 0).

Ifl = 2andr > 2m, — 2ny ™! + 6 — 4min{@ (o, f), O (0, g)},

orl=1and r > max{2m; — 2s;71 + 4 — O(oo, f) — O(o, g),

2m, + % - %55‘1 —2nyt+ 7 — %min{@(oo,f), 0(, g)}},

orl=0and r > max{2m; — 2s;71 + 4 — O(oo, f) — O(o, g),

2my + 3my — 3sy7 1 = 2nh71 4+ 12 — 7min{0 (o, f), @(o, g)}},

Then f = g, provided m > 1.

The first result in this paper will follow the above direction to prove the following.
Theorem 1.5. Suppose that f is a meromorphic function of finite order and P(f) be a polynomial
that is specified in (1.1). Suppose that f*(2)(f™(z) — 1)P(f(z))and g"(z)(g™(z) —
1)P(g(2)) share of (R(z),1), where R(z) is a rational function and [,n,m € Z. If any one of the
following situations applies:

(DI=0,n =27m+ 7s + 14;
2)l=1,n>8m+8s+9;
B)l=2,n=7m+7s+8,

then f =tg or f.g = ta, where t" = 1,a™ = R?.

In 2017, chen [3] proved the results by considering unique range sets.

Theorem 1.6. ([3]) Let keZ* and let S; = {a, ay,...,a;}, S, = {B1, B} fulfill the requirement
(B — a)?(Br — az)? -+ (By — a)® # (B — a1)* (B, — a)® -+ (B, — @) for k+2 distinct
finite complex numbers a4, ay, ..., @y, B1, B2. Then the sets S;and S, are the URS of meromorphic
functions in M, (C), the class of meromorphic functions which have finitely many poles in C, when
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the order of f(z) is neither an integer nor infinite.

In 2020, P. Sahoo and A. Sarkar [9] proved the following.
Theorem 1.7. ([9]) Let S;and S, be as in Theorem 1.6 for k > 2m, + 3my. If (B; — a;)*(B; —
;)% (B — ar)? # (B, — a1)* (B, — az)? -+ (B, — ax)?. Then the sets S;and S, are the URS of
meromorphic functions in M,(C), where M,(C) is the subclass of meromorphic functions of non-
integer finite order in M, (C).

In this paper we prove the results for k" derivative of entire(meromorphic) functions sharing
unique range sets.
Theorem 1.8. Suppose that n,me Z for n > 2(m+ 1)(k + 2) and a, b are nonzero constants
satisfying (1.2). If n and m are coprime then S = {w|w™ + aw™ + b = 0} is a URSE.
Theorem 1.9. Let n and m be integers with n > 2(2+m)k + 8 and m > 2. Let a,b(# 0) be
constants satisfying (1.2). If n and m are coprime then S = {w|w™ + aw™ + b = 0} is a URSE, if
any two nonconstant meromorphic functions f and g with E¢(S) = E,(S) must have f = g.

2 Lemmas
We represent by H the below function:
F” ZFI GII ZGI
H=(5-75)-(F-25)
where F and G are defined in the complex plane as nonconstant meromorphic functions.
Lemma 2.1. [11, 12] Suppose f(z) is a meromorphic function in C and P(z) = a,,f™ +
A1 f™ 1+ -+ a,f + ay, Where a,,,(# 0), ay,_1, ..., ag are constants, be a polynomial. Then
T(r,P(f)) = mT(r,f) + S(r, f).
Lemma 2.2 [4] Let f be a finite order meromorphic function and ceC — {0}. Then

f(z+c) f@) \ _ p(f)—1+¢
m (T‘, f(@) ) tm (T‘, f(z+c)) Ofe 3

Lemma 2.3. [1] Suppose that two nonconstant meromorphic functions F, G share (1,0) and H # 0.
Then
1 1 = 1 = 1 =
T(r,F) <N, (r.3) + Nz (7, E) + Ny(r,F) + Ny (r, G) + 2N (7, E) +N (r, <)+ 2N, F) +
N(r,G) + S(r,F) + S(r, G).
Lemma 2.4. [1] If two nonconstant meromorphic functions F, G sharing (1,1) and H # 0. Then
1 = 1 1= 1
T(r,F) < N, (r%) +N, (r,E) + Ny (r, F) + Ny(r,6) + SN (r,;) +oN (r,E) +S(r F) +
S(r, G).
Lemma 2.5. [10] Let (1,2) is shared by two nonconstant meromorphic functions f and g. Then any
one of the below cases holds:
O TC) < Ny (r,7) + No (r,2) + Mol ) + Na (. 9) + S (),
@ f =g
(iii) fg = 1, where T(r) = max{T(r,f),T(r,g)} and S(r) = of{T(r)}, as r ¢ E, where E C
(0, ) is a subset of finite linear measure.

Lemma 2.6. [5] Let keZ* and f and g are meromorphic functions. If E,(1; f) = E,(1; g), then
any of the below cases must exist:

AT, f)+T(,g) <N, (r,%) + N, (r,é) + Ny (1, f) + No(r,g) + N(r,f—il) + N(r,i) -

g-1
1 = 1 = 1
Niy (7"» 171) + Nige+1 (T; ]Tl) + Nke+1 (7“,;) +S8(r, )+ S, 9);
.. _ (a-b-1D)+(b+1)g
(ll)f - (a-b)+bg
Lemma 2.7. Let f be a meromorphic function of order p and P(f(z)) be as defined in (1.1). Then for

any positive integers nm T (r,f(2)(f™(2) - DP(f(2)) = (n+m+ )T f) +
O{rPN*e=1} + S(r, f), for reE.
Proof: We set F; = f™(2)(f™(z) — 1)P(f(2)). Then by Lemma 2.1, 2.2 we get

, Where a(+ 0), b are two constants.
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m+m+s)T(r,f) = T(r,f"*s(z)(fm — 1)) + S(r, f),
<m(r, fP@DU™ = D) + N(r, 5@ (™ = 1) + S, f),

e s
‘m@”ﬁ(ﬂnﬁ (“ﬂ U(»)+“r”

<T@, F) + 0{rPO+e 11 4 S(r, f). (2.1)
On the other side we have
P(f(2))

T(r,F) <T(r,f"(2) +T(r,(f™ - 1)) + T( S Fs

<T0f%@)+ﬂrum—1D+T< (ﬂ)»+T(f)+S@f)

)esten

<(n+m+s)T(rf)+Za] < >+S(rf)

<(m+m+s)T(r,f)+ O{r"’m*‘g B +50,1). (2.2)
From (2.1) and (2.2) we have
T(r,F))=mm+m+s)T(r,f) + O{rp(f)+£‘1} +S(r, f).

3 Proof of the Theorems
Proof of Theorem 1.5
Proof: Set F = -2Y m(z) DEU@) (o (Z)(gm(z) DP(g(2)

Then F, G share (1,1). Let T(r) = max{T(r, F), T(r G)} and S(r) = o{T(r)} as r - oo, outside a
linear measure set.
Casel.l=0,n=>7m+7s + 14.
Let H # 0. Then from Lemmas (2.3) and (2.7), we get
1 1 — 1 = 1 =
T(r,F) < N, (r, ;) + N, (r, E) + Ny(r, F) + Ny(r, G) + 2N (r, ;) +N (r, E) +2N(r, F) +
N(r,G) + S(r,F) + S(r,G).
Hence
n+m+3s)T(r,f)

<2(1+m+ s)N(r,%) T2l +m+ S)N(r’%)

+2(14+m+s)N(r, f)+2(1+m+s)N(r,g) + 2N (T,%)

+N (r, %) L 2N f) + N(r,g) + S(r f) + S(r, ),

SUA+m+s)+ DT, H+ @A +m+s)+2)T(r,g) + S, f)+S(r, 9).
(3.1)
Similarly
n+m+3s)T(r,g9)
SUA+m+s)+DT(r,g) +@A+m+s)+2)T(r,f)+S, )+ S, 9).
(3.2)
Thus (3.1) and (3.2) give
m=Tm—=7s =1)[T(,f)+ T, g) <SS, f)+ S0, 9).
Hence
n—7m—-7s —14)T(r) < S(r),
which disprove n > 7m + 7s + 14.
So,H =0.i.e,

GF-5)-E-5)-=o (33)
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From (3.3) we have

1 A
here A # 0, B are constant.
Subcase 1.1. When B = 0, the (3.4) becomes F = A71*% and

A
G =1+ AF — A. Suppose A = 1, then F = G and therefore f = tg, when t™ = 1. Suppose A # 1,

then

() =9 )
and ’

W(rs) = (ra)

Applying second fundamental theorem and Lemma 2.7,

T(r,F) <N (r, %) +N (ré) + N, F) + S(r, F),

< N(r,%) +1V(r,%) + N(r,F) + S(r, F).

Hence
mM+m+s)Tr,f)<(A+m +s)IV<r,l) +(1+m +s)1V<r,l>
f g

+(1+m+s)N(, f)+S(r,f),
S204+m+ )T, )+ A +m+5s)T(r,g) +S(,f). (3.5)
In similar way we have
MmM+m+s)T(r,g) <20 +m+s)T(r,g) + A +m+s)T(r, f)+S(r,9).

(3.6)

Adding (3.5) and (3.6) we obtain
MmM+m+9)[TEf)+Tr g <30 +m+ )T, f)+ T, g)l+Sk, f)+S(,9).
That is
n—2m—-2s =3)[T(r,f)+T(r, g <SS f)+S( 9).
Which disprove n > 2m + 2s + 3.

Subcase 1.2 If B+ 0 and A # 0, then F = %. By taking into account 0,1, o point of F and

applying second fundamental theorem to F we obtain contradiction similar to subcase 1.1.

Case2.l=1,n=>8m+8s+09.
Let us assume H # 0. Then by Lemmas 2.4, 2.7

T(r,F) < N, (r, )+ N (r, )+ Ny(r, F) + Ny(r,G) + 5 (r, )+ 3N F) +S(r, F) + S(r,6),
<2(1+m+s)N (r,%) +2(1+m+s)N (r,g) +2(1+m+s)N(, f)

+2(1+m+s)N(r, g) +%(1 +m+s)1V(r,%) +%(1+m+s)1V(r,f)
+S(r, f) +S(r, 9),

<E(1+m+s)N(r 1>+2(1+m+s)1V(r l)+E(1+m+s)N(r )
<3 7 3) T2 )

+2(1+m+s)N(r,g) + S(r,f) + S(r, g).

Thus

mM+m+s)T(r, ) <50 +m+s)Tr,f)+4Q+m+s)T(r,g) +S, f)+S(,9)
3.7)

In a similar way

mM+m+s)T(r,g) <5(0+m+s)T(r,g) +4A+m+s)T(r, f)+S@,f)+ S, 9)
(3.8)
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Adding (3.7) and (3.8)

m—8m—8s—9)[T(rf)+T(r g <SS f)+S(,g).
Which again disprove n = 8m + 8s + 9.

Hence H = 0. We can conclude the similar outcome as in Case 1.
Case3d.l=>2,n=>7m+ 7s+ 8.

Subcase 3.1. [ = 2.

From Lemma 2.5, if (1) holds, then we can derive

max{T(r,F)+T(r,G)} <N, (r,%) + N, (r,%) + N,(r,F) + Ny(r,G) + S(r, f) + S(r, 9).
(3.9)

That is

mM+m+s)Tr)=m+m+s)max{T(r,F) + T(r,G)},

<2(1 +m+s)N(r,l) +2(1 +m+s)1V(r,l) +2(1+m+s)N(r, f)
f g

+2(1+m+s)N(r,g) + S(r),

<8A+m+s)T(r)+S(r).

Therefore, (n — 7m — 7s — 8)T(r) < S(r), which becomes a contradiction to n = 7m + 7s + 8. Thus
F =G or FG = 1. Suppose F = G then

(2 (f™(z) — 1P(f(2) = g™(2)(g™(2) — 1)P(g(2)). Which leads f =tg, where t"=1.
Suppose FG = 1 then

frf@)(f™(z) — 1)P(f(z))g”(z)(gm(z) — 1)P(g(z)) = R2. Which yields fg =ta,t" =1,a" =
RZ.

Subcase 3.2. 1 = 3.

From Lemma 2.6, any one of (1) or (2) holds. Suppose (1) holds then

T(r,F)+T(r,G) <N, (r,%) + N, (r,%) + N,(r,F) + N,(r,G)

8 (r =)+ (i) = M () s () +
"F-1 "e—1) " "\"Fog) T e \NE

= 1

Niewr (1. ==) + SG, F) + 5@, 6),

1 1 1 1
< — - —
< N,(r,F) + N,(r,G) + N, (T'F) + N, (T,G>+2N<T,F_ 1) +

1= 1
+EN(T,E) +S(T‘,F) +S(T,G),

S2(1+m+s)1V(r,f)+2(1+m+s)1V(r,g)+2(1+m+s)1V(r,%>+
2(1+m+s)1V(r l)+1(1+m+s)1V(rL)_|_
g/ 2 -1

;A +m+ N (r,=5) + 50, ) + S, ).
Therefore, we get
%(n +m+s)Tr, f)+Tr,g) <4 +m+s) [T, f)+Tr,g)l+S,f)+ S, 9).
(3.10)
Which takes to
(Gn=30m+5)=4) (TG ) +T(r,9) < SC.f) + S, 9).
Thus, we get a contradiction asn = 7m + 7s + 8. Hence (2) holds.
ie, F= w, where a # 0, b are constants.
bG+(a—b)
Suppose that b = 0. Then
() (F™(2) — 1DP(f(2)) = g™(2)(g™(2) — 1)P(g(2)), for a = 1 thatis f = tg, where t" = 1. If
a#1thenF =2"tand ¢ = a(F+1?Ta)
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Adso 8 (1) = 8 (). 8 (nd) = (s )

Using second fundamental theorem, we get

T(r,6) < N(r,2) + N (r,——) + N(r,6) + 5(r, 6).

This, yields

mM+m+s)T(r,g) <20 +m+s)T(r,g) + (A +m+s)T(r,f) +S(r,9).

Similarly, we have

MmM+m+s)T(r, ) <2Q+m+s)Tr, )+ (A +m+s)T(r,g) + S, f).

Thus (n —2m — 2s = 3)[T(r,f) + T(r,g)] < S(r, f) + S(r, g), which is a contradiction withn > 7m +
7s + 8. Suppose thatb + 1 = 0,a + 1 = 0, then FG = 1. Hence fg = ta, where t" = 1,a™ = R%. If a +
1 # 0, we obtain a contradiction as above. Suppose b # 0, —1. We also get a contradiction for the case b =
0 as in subcase 1.1 of case 1. This completes the proof.

Proof of Theorem 1.8
Proof: Let f, g be nonconstant entire functions which satisfies,

E¢(S) =(k1)5g (S). . (3.11)
I o L 0
Set F =@ = Gomip® (3.12)
Then (3.11) gives that F and G share 1 CM. Applying theorem 1.1 to (3.12) we have
T(r,F) =kT(r, f)+S(,f). (3.13)
T(r,F) =kT(r,g) +S(r,9). (3.14)

Since Fis entire, (3.12) gives

N, (r%) < (k+ 2N (r, %) < (k+2)T(r, f) + 0(1).
Ny(r,F) < Nieaz ( <m(k + 2)T(r, f) + 0(1).
So, (3.13) yields

1
r —
'afm+b)

Ny (1,2) + Ny(r, F) < S22 ) 4 5, £). (3.15)
Similarly
Ny (1,2) + Ny (r,6) < 2D 1 gy 4 5(r, g). (3.16)

Define T(r) = max{T(r,F),T(r,G)}.
It follows from (3.15) and (3.16) that

1 1
NZ (T‘,—) + Nz(r, F) + N2 (T,E) + Nz(r, G)

F
< (w + 0(1)) T(r), rE.
Since M + 0(1) < 1 from theorem 1.2 we know that F = G or
FG = 1. Further from (3.13) and (3.14) we have
T(r,f)=T(r,g) +S(,f). (3.17)
Case 1. If FG = 1 then
(MW (gM® = (af™ + b)*) (ag™ + b)®. (3.18)

Suppose that m = 2. Let w;(j = 1,2, ..., m) be m distinct roots of
aw™ + b = 0, and let z; be a zero of f — w;. Then (3.18) implies that z; has at least multiplicity n. So

0(w,f) 21—~ j=12,..,m.
Which are impossible. If m = 1, (3.15) and (3.16) leads to
= 1 = 1 k 1
e (r,7) = k¥ (r.555) < 2N (5
<<T(r,9) + 0(D),
<ET(r ) +5(r. f).
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kN (r, af1+b) = SN (r, af1+b)’
<ET(r ) + 50 f).

Hence from second fundamental theorem
kT(rf)<kN( )+k1v( ——) +5(. /),
< 7T(r,f) + S(r,f).

Which is a contradiction.
Case 2. If F = G then
(FMH¥ag™ + b)) = (g (af™ + b)®. (3.19)
Suppose that f # g. Then (3.19) leads to
fm= b(h—u)(h—u?)..(h-u""?1)

a(h— v)(h v2)...(h—pn—m-1)’

271.'[ 27'L'l

where h = E’ u=en and v = en-m. Since m and n are coprime, there is no common factor in the

(3.20)

numerator and denominator of (3.20). It means that v/ (1 < j < n —m — 1) are Picard exceptional values
of h and h is a non-constant entire function. This is not possible. Therefore f = g.

Proof of Theorem 1.9
Proof: Let f, g be non-constant meromorphic functions satisfy

Ef(S) = Ef(i)) N (3.21)
M @®
Set F, = @ 01 = Ggmin® (3.22)
Then (3.21) implies that F; and G, share 1 CM. Applying theorem 1.1 to (3.22) we have
T(r,F) =kT(r, f)+ S, f). (3.23)
T(r,G,) =kT(r,g)+S(r,9). (3.24)

Since F; is meromorphic, (3.22) gives
N, (7, —) < (k+2N(r, ) < (k+ 2)T(r, f) + 0(1).

Ny(r,F}) < (k+2)N(r, f) + kN (r,ﬁ),

<(k+2+Ekm)T(r, )+ 0(1).
Hence

Ny (i) + No(r, ) < 22282
Similarly
N, (rGil) + Ny(r,Gy) < T(r,9) + S(r, 9). (3.26)

Define T(r) = max{T (r, F1),T(r, G}
It follows from (3.25) and (3.26) that

N, (r, Fil) + N, (r, F,) + N, (r, i) + N,(r,Gy) <

(2+m)k+4

— T, f)+50.1). (3.25)

(2+m)k+4

(M + 0(1)) T(r), r & E.

Since < 1. From theorem 1.2 we know that F; = G, or F,G; = 1.

Case 1. If FlG1 = 1, then
(fM® @MY = (af™ + b)) (ag™ + b)™. (3.27)
Let z, be a p order pole of f. Thus (3.27) implies that z, must be a zero of g. Suppose that z, is of order
q. Thus (3.27) gives
(n—m)p =ngq. (3.28)
Since n and m are coprime, (3.28) means that n is a factor of p and p > n. So
N(r f) SN, f) S2T(rf).
Let w;j(j = 1,2,..,m) be m distinct roots of aw™ + b = 0 and let z; be a zero of f — w;. Then (3.27)

2k(2+m)+8
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implies that z; has at least multiplicity n. Hence

kIV(r,f_l ) —N( ) <510, ) + 0.
W j f-wj
Note that m > 2, by second fundamental theorem, we have
k(m—1DT(@, f) <kN(r,f) + kZ?Lllv(r,_;w_) + S(r, ),
]
< ST, ) + 50 f),

which is a contradlctlon
Case 2. If F; = G, then
(FMH®(ag™+ b)® = (gM)® (af™ + b)), (3.29)
Assume that f # g, then (3.29) gives
fm = b(h-w)(h—u?)..(h—u™"1)

a(h- v)(h v2)...(h—pn—m-1)’

ZTL'l 211.'l

Where h = 5 u=en and v = en-m. Since m and n are coprime, the numerator and the denominator od

(3.30)

(3.30) have no common factors. It means that h is a nonconstant meromorphic function and zeros of h —
u/ (1 <j < (n—1) we have at least multiplicity m.
Hence

N(r—) <ZN(r—) <ZT(h) +0(D).
Again, by second fundamental theorem we get
k(n=3)T(r,h) < kXN (r,—) +S(r, ),

<D 1, h) + 5(r, ),

which is contradlctlon Therefore f = g. Hence the proof.
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